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1. Introduction

Four-dimensional N = 1 supergravity exists in several off-shell incarnations. They differ

in the structure of their auxiliary fields and, as a consequence, in their matter couplings to

supersymmetric matter. It is an ancient tradition1 to label the off-shell N = 1 supergravity

formulations by a parameter n, with its different values corresponding to the following

supergravity versions:

i) non-minimal (n 6= −1/3, 0) [3, 2, 4];

ii) old minimal (n = −1/3) [5, 6];

iii) new minimal (n = 0) [7].

Comprehensive reviews of these formulations can be found in [8, 9]. At the linearized level,

there also exists a third minimal realization for the massless (3/2, 2) supermultiplet [10],

which is reminiscent of the new minimal formulation. The three minimal formulations and

the non-minimal series turn out to comprise all possible ways to realize the irreducible

massless superspin-3/2 multiplet as a gauge theory of a real axial vector Ha (gravitational

superfield) and special compensator(s) [11]. Somewhat unexpectedly, a proliferation of

off-shell formulations emerges in the massive case.

1It goes back to 1977 when the prepotential formulation for N = 1 superfield supergravity was first

developed [1, 2].
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On the mass shell, there is a unique way to realize the massive superspin-3/2 multi-

plet (or massive graviton multiplet) in terms of a real (axial) vector superfield Ha. The

corresponding equations [12, 9, 10] are:

(¤ − m2)Hαα̇ = 0 , DαHαα̇ = 0 , D
α̇
Hαα̇ = 0 =⇒ ∂αα̇Hαα̇ = 0 . (1.1)

It turns out that no action functional exists to generate these equations if Hαα̇ is the

only dynamical variable [10]. However, such an action can be constructed if one allows

for auxiliary superfields ϕ with the property that the full mass shell is equivalent to the

equations (1.1) together with ϕ = 0. Several supersymmetric models with the required

properties have been proposed [10, 13, 14]. In particular, for each of the three minimal

formulations for linearized supergravity, massive extensions have been derived [13, 14]. By

applying superfield duality transformations to these theories, one generates three more

models [14] two of which originally appeared in [10].

The present paper continues the research initiated in [10, 13, 14]. We propose new

off-shell formulations for the massive superspin-3/2 multiplet. In particular, we derive

two new massive extensions of old minimal supergravity, which possess quite interesting

properties, as well as a massive extension of non-minimal supergravity.

2. Minimal supergravity multiplets and their massive extensions

In this section, we review the linearized actions for the three minimal supergravity for-

mulations, and recall their massive extensions proposed in [13, 14]. These massive actions

possess nontrivial duals [10, 14], which are collected in the appendix.

2.1 Minimal supergravity multiplets

Throughout this paper, we use a reduced set [11] of the superprojectors [15] for the gravi-

tational superfield Hαα̇:

ΠL
0 Hαα̇ = − 1

32

∂αα̇

¤2
{D2,D

2}∂ββ̇H
ββ̇

, (2.1)

ΠL
1

2

Hαα̇ =
1

16

∂αα̇

¤2
DγD

2
Dγ∂ββ̇Hββ̇ , (2.2)

ΠT
1

2

Hαα̇ =
1

48

∂β
α̇

¤2

[

DβD
2
Dγ∂ β̇

(α Hγ)β̇ + DαD
2
Dγ∂ β̇

(β Hγ)β̇

]

, (2.3)

ΠT
1 Hαα̇ =

1

32

∂β
α̇

¤2
{D2,D

2}∂ β̇

(α H
β)β̇ , (2.4)

ΠT
3

2

Hαα̇ = − 1

48

∂β
α̇

¤2
DγD

2
D(γ∂ β̇

α H
β)β̇ . (2.5)

Here the superscripts L and T denote longitudinal and transverse projectors, while the

subscripts 0, 1/2, 1, 3/2 stand for superspin. Given a local linearized action functional of
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Hαα̇, it can be expressed in terms of superprojectors using the following identities:

DγD
2
DγHαα̇ = −8¤

(

ΠL
1

2

+ ΠT
1

2

+ ΠT
3

2

)

Hαα̇ , (2.6)

∂αα̇∂ββ̇H
ββ̇

= −2¤(ΠL
0 + ΠL

1

2

)Hαα̇ , (2.7)

[Dα,Dα̇][Dβ,D
β̇
]Hββ̇ = 8¤

(

ΠL
0 − 3ΠT

1

2

)

Hαα̇ , (2.8)

¤Hαα̇ = ¤

(

ΠL
0 + ΠL

1

2

+ ΠT
1

2

+ ΠT
1 + ΠT

3

2

)

Hαα̇ , (2.9)

The linearized action for old minimal (type I) supergravity is

S(I)[H,σ] =

∫

d8z
{

Hαα̇
¤

(1

2
ΠT

3

2

− 1

3
ΠL

0

)

Hαα̇ − i(σ − σ)∂αα̇Hαα̇ − 3σσ
}

. (2.10)

Here σ is the chiral compensator, Dα̇σ = 0.

The linearized action for new minimal (type II) supergravity is

S(II)[H,U ] =

∫

d8z
{

Hαα̇
¤

(1

2
ΠT

3

2

− ΠT
1

2

)

Hαα̇ +
1

2
U [Dα,Dα̇]Hαα̇ +

3

2
U2

}

. (2.11)

Here U is the real linear compensator, D
2U = 0.

Type III supergravity is known at the linearized level [10] only. The corresponding

action is

S(III)[H,U ] =

∫

d8z
{

Hαα̇
¤

(1

2
ΠT

3

2

+
1

3
ΠL

1

2

)

Hαα̇ + U∂αα̇Hαα̇ +
3

2
U2

}

. (2.12)

Similarly to (2.11), here U the real linear compensator, D
2U = 0.

2.2 Massive extensions

As demonstrated in [13, 14], consistent massive extensions of the supersymmetric theo-

ries (2.10), (2.11) and (2.12) can be obtained simply by adding mass terms for the grav-

itational superfield and for a gauge potential associated with the compensator, with the

latter being treated as a gauge-invariant field strength.

Consider first the off-shell massive supergravity multiplet derived in [13]. The chirality

constraint on the compensator σ in (2.10) can always be solved in terms of an unconstrained

real superfield [16]:

σ = −1

4
D

2
P , σ = −1

4
D2P , P = P . (2.13)

Then, the massive extension of (2.10), which was proposed in [13], is

S(I)
mass[H,P ] = S(I)[H,σ] − 1

2
m2

∫

d8z
{

Hαα̇Hαα̇ − 9

2
P 2

}

. (2.14)

The supergravity formulations (2.11) and (2.12) involve the real linear compensator

U . The constraint on U can be solved as follows [17]:

U = Dαχα + Dα̇χα̇ , Dα̇χα = 0 ,
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with χα an unconstrained chiral spinor. Adopting χα and χ̄α̇ as independent dynamical

variables to describe the compensator, the new minimal model (2.11) possesses the massive

extension [14]

S(II)
mass[H,χ] = S(II)[H,U ] − 1

2
m2

∫

d8z Hαα̇Hαα̇ + 3m2
{

∫

d6z χ2 + c.c.
}

. (2.15)

Similarly, the type III model (2.12) possesses the following massive extension [14]

S(III)
mass[H,χ] = S(III)[H,U ] − 1

2
m2

∫

d8z Hαα̇Hαα̇ − 9m2
{

∫

d6z χ2 + c.c.
}

. (2.16)

3. New massive supergravity multiplets

In the previous section we have reviewed several known formulations for the massive

superspin-3/2 multiplet. They constitute massive extensions of the minimal supergrav-

ity formulations with 12 + 12 off-shell degrees of freedom. Now, we are going to obtain a

massive extension of the non-minimal supergravity formulation with 20+20 off-shell degrees

of freedom. In the notation of [9], the linearized action for non-minimal supergravity [2] is

as follows:

SNM[H,Σ] =

∫

d8z

[

− 1

16
Hαα̇DβD

2
DβHαα̇ +

n + 1

8n
(∂αα̇Hαα̇)2

+
n + 1

32
([Dα,Dα̇]Hαα̇)2 − (n + 1)(3n + 1)

4n
iHαα̇∂αα̇(Σ − Σ)

−3n + 1

4
Hαα̇(DαDα̇Σ − Dα̇DαΣ)

+
(3n + 1)2

4n
ΣΣ +

9n2 − 1

8n
(Σ2 + Σ

2
)

]

=

∫

d8z

[

1

2
Hαα̇

¤

(

ΠT
3

2

+
(n + 1)2

2n
ΠL

0 +
3n + 1

2n
ΠL

1

2

− 3n + 1

2
ΠT

1

2

)

Hαα̇

−(n + 1)(3n + 1)

4n
iHαα̇∂αα̇(Σ − Σ) +

(3n + 1)2

4n
ΣΣ

−3n + 1

4
Hαα̇(DαDα̇Σ − Dα̇DαΣ) +

9n2 − 1

8n
(Σ2 + Σ

2
)

]

, (3.1)

Here n 6= −1/3, 0, and the compensator Σ is a complex linear superfield obeying the only

constraint D
2
Σ = 0. For simplicity, the parameter n is chosen in (3.1) to be real, see [2, 4]

for the general case of complex n.

From the point of view of massive supergravity, the non-minimal formulation appears

to be quite special. It turns out that there is no consistent massive extension of the

theory (3.1) obtained by adding mass terms for the gravitational superfield and for the

gauge spinor potential Ψα associated with the non-minimal compensator Σ = DαΨα.2

2Note that, of course, the unconstrained superfield prepotential superfield Ψα is not chiral, unlike χα in

the new minimal case.
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This fact is in obvious contrast with the minimal supergravity formulations discussed in

the previous section. We will come back to a discussion of these points in section 4.

3.1 Massive extensions of old minimal supergravity

To derive a massive extension of (3.1), one can try to employ the idea that the old min-

imal and non-minimal supergravity formulations are dually equivalent, see e.g. [8, 9] for

reviews. In order to apply duality considerations in the massive case, however, it is neces-

sary to have an appropriate massive extension of the action (2.10). It turns out that the

formulation (2.14) is not well suited.

Therefore, as a first step, let us actually derive a new massive extension of the old

minimal supergravity formulation (2.10). As compared with (2.14), such an extension

appears to be more natural, for the chiral compensator is defined through an unconstrained

complex superfield F :

σ = −1

4
D

2
F , σ = −1

4
D2F . (3.2)

We choose the simplest ansatz for the massive action:

S̃(I)
mass[H,F ] = S(I)[H,σ] − m2

∫

d8z
{1

2
Hαα̇Hαα̇ − aFF

}

, (3.3)

with a 6= 0 a real constant.

To prove that (3.3) indeed describes a massive superspin-3/2 multiplet, for a special

value of the parameter a, we study the corresponding equations of motion:

0 = ¤

(

− 2

3
ΠL

0 + ΠT
3

2

)

Hαα̇ + i∂αα̇(σ − σ) − m2Hαα̇ , (3.4)

0 =
i

4
D

2
∂αα̇Hαα̇ − 3

16
D

2
D2F + am2F , (3.5)

0 = − i

4
D2∂αα̇Hαα̇ − 3

16
D2D

2
F + am2F . (3.6)

Since a 6= 0 and m 6= 0, the equations (3.5) and (3.6) imply Dα̇F = DαF = 0. Now, we

can use the identity 1
16D2D

2
+ 1

16D
2
D2 + 1

8DαD
2
Dα = ¤, in order to rewrite eqs. (3.5)

and (3.6) as

0 =
i

4
D

2
∂αα̇Hαα̇ − 3¤F + am2F , (3.7)

0 = − i

4
D2∂αα̇Hαα̇ − 3¤F + am2F . (3.8)

Next, by applying i
4D

2
∂αα̇ to eq. (3.4) and making use of eq. (3.7), we arrive at

¤

(2a

3
− 3

)

F + am2F = 0 . (3.9)

Choosing a ≡ 9
2 gives F = 0 = F on the mass shell. After that, eqs. (3.7) and (3.8) give

ΠL
0 Hαα̇ = 0. Finally, by applying to equation (3.4) respectively the projectors ΠL

1

2

, ΠT
1

2

and

ΠT
1 we find

ΠL
1

2

Hαα̇ = ΠT
1

2

Hαα̇ = ΠT
1 Hαα̇ = 0 . (3.10)

– 5 –
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The only non-zero projected component is ΠT
3

2

Hαα̇ which is now equal to Hαα̇ and, once

simplified equation (3.4), results to satisfy the Klein-Gordon equation. All the previous

relations imply that on-shell Hαα̇, satisfy equations (1.1), and it describes the irreducible

massive superspin-3/2 multiplet. The final action is:

S̃(I)
mass[H,F ] = S(I)[H,σ] − 1

2
m2

∫

d8z
{

Hαα̇Hαα̇ − 9FF
}

, (3.11)

with σ expressed via F according to (3.2).

The model constructed, eq. (3.11), can be related to that given in (2.14). Indeed, let

us consider the following nonlocal field redefinition (compare with [9]):

F = −1

4

D2

¤
σ + ϕ +

1√
2
(U + iV) . (3.12)

Here σ and ϕ are chiral scalars, Dα̇σ = Dα̇ϕ = 0, while U and V are real linear superfields,

D
2U = D

2V = 0 , U = U , V = V . (3.13)

We then have
∫

d8z FF =
1

2

∫

d8z (P 2 + V 2) , (3.14)

where

P = −1

4

D2

¤
σ − 1

4

D
2

¤
σ + U , V = ϕ + ϕ + V (3.15)

are unconstrained real superfields. It is obvious that σ = −1
4D

2
F = −1

4D
2
P . Let us

implement the field redefinition (3.12) in the action (3.11). This gives

S̃(I)
mass[H,F ] = S(I)

mass[H,P ] +
9

4
m2

∫

d8z V 2 . (3.16)

Since V is unconstrained and appears in the action without derivatives, it can be integrated

out. This amounts to setting to zero the second term in (3.16).

It is worth saying a few more words about the two solutions, eqs. (2.13) and (3.2), to

the chirality constraint in terms of unconstrained superfields. Parametrization (3.2) for the

chiral compensator is known to lead to the standard auxiliary fields of minimal supergravity

(S,P,Aa). If one instead parametrizes σ according to (2.13), the set of auxiliary fields

becomes (S,Cabc, Aa). This set includes a gauge three-form Cabc, instead of the scalar

P . The latter actually occurs as a gauge-invariant field strength associated with Cabc. It

perhaps is worth noting that this three-form in four dimensions though non-dynamical may

be regarded as the truncation of the well-known similar dynamical field that occurs in 11D

supergravity and M-theory.

The theory with action (3.11) can be used to construct a dual formulation, in a manner

similar to the approach advocated in [14]. Instead of imposing eq. (3.2) as a kinematic

– 6 –
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constraint, one can generate it as an equation of motion by means of the introduction of

an unconstrained complex Lagrange multiplier Y . Consider the following auxiliary action:

S = S(I)[H,σ] +

∫

d8z
[

− 1

2
m2Hαα̇Hαα̇ +

9

2
m2FF

+3m Y
(1

4
D

2
F + σ

)

+ 3m Y
(1

4
D2F + σ

)]

. (3.17)

Here σ is a chiral superfield unrelated to F . Varying Y and Y enforces the constraints (3.2),

and then we are clearly back to (3.11). On the other hand, if we integrate out F and F

using their equations of motions

3

2
mF +

1

4
D2Y = 0 ,

3

2
mF +

1

4
D

2
Y = 0 , (3.18)

and introduce the chiral superfield χ = −1
4D

2
Y and its conjugate χ = −1

4D2Y , we arrive

at the following dual action

S =

∫

d8z
[

Hαα̇
¤

(1

2
ΠT

3

2

− 1

3
ΠL

0

)

Hαα̇ − i(σ − σ)∂αα̇Hαα̇ − 3σσ

−1

2
m2Hαα̇Hαα̇ − 2χχ

]

+ 3m

∫

d6z χσ + 3m

∫

d6z̄ χ σ . (3.19)

This dynamical system is quite interesting in its own rights. Unlike the massive mod-

els (2.14) and (3.11), the above formulation involves only the chiral compensator of old

minimal supergravity, and not its gauge potential. The mass generation becomes possible

due to the presence of a second chiral superfield. In a sense, one can also interpret (3.19)

as a coupling of the gravitational superfield to a massive N = 2 hypermultiplet.

The explicit structure of action (3.19) explains why all attempts have failed to construct

a Lagrangian formulation for the massive superspin-3/2 multiplet solely in terms of the old

minimal supergravity prepotentials Ha, σ and σ.

3.2 Massive extension of non-minimal supergravity

Up to now we have considered massive extensions of old minimal and new minimal su-

pergravity. Here we would like to address the problem of deriving a massive extension of

linearized non-minimal supergravity [2, 4, 8, 9]. This goal can be achieved by performing

a different duality transformation starting from (3.11).

In the action (3.17), the superfield σ is chiral by construction. Enforcing the equation

of motion for Y constrains F to be related to σ according to (3.2). Clearly, in analogy

with the action (A.1), we can actually remove the chirality constraint imposed on σ and

choose this superfield to be unconstrained complex off the mass shell. Note also that, in

such a setting, we can write a more general action that should reduce to (3.17) once σ is

– 7 –
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constrained to be chiral, namely3

S =

∫

d8z

[

Hαα̇
¤

(1

2
ΠT

3

2

− 1

3
ΠL

0

)

Hαα̇

+(2a − 1)(S − S)i∂αα̇Hαα̇ + aS DαD
α̇
Hαα̇ − aS D

α̇
DαHαα̇

−3SS − b
3

2
(S2 + S

2
) − 1

2
m2Hαα̇Hαα̇ +

9

2
m2FF

+3m Y
(1

4
D

2
F + S

)

+ 3m Y
(1

4
D2F + S

)

]

. (3.20)

Clearly, varying Y and Y gives S = σ = −1
4D

2
F and the conjugate relation, and then we

are still back to (3.3). Instead if we integrate out S, F and their conjugates, using their

equations of motion

F = − 1

6m
D2Y , 0 = −S − bS − (2a − 1)

3
i∂αα̇Hαα̇ − a

3
Dα̇DαHαα̇ + mY , (3.21)

which imply

S =
a

6(b + 1)
[Dα,Dα̇]Hαα̇ +

(a − 1)

3(b − 1)
i∂αα̇Hαα̇ +

m

b2 − 1
(b Y − Y ) , (3.22)

we arrive at the following action (defining Σ = mY and χ = −1
4D

2
Y ):

S =

∫

d8z

{

1

2
Hαα̇

¤

[

ΠT
3

2

+
( 4a2

3(b + 1)
− 4(a − 1)2

3(b − 1)
− 2

3

)

ΠL
0

−4(a − 1)2

3(b − 1)
ΠL

1

2

− 4a2

b + 1
ΠT

1

2

]

Hαα̇

−1

2
m2Hαα̇Hαα̇ +

(2a − b − 1

b2 − 1

)

(Σ − Σ)i∂αα̇Hαα̇

+
a

b + 1
Hαα̇(DαDα̇Σ − Dα̇DαΣ) +

3b

2(b2 − 1)
(Σ2 + Σ

2
)

− 3

b2 − 1
ΣΣ − 2χχ

}

, (3.23)

with the dynamical variables χ and Σ constrained as follows:

Dα̇χ = 0 , −1

4
D

2
Σ = m χ . (3.24)

These constraints describe a chiral-non-minimal (CNM) doublet [18] (see also [19] for recent

results on the quantum beahviour of CNM multiplets). We have thus constructed a CNM

formulation for massive supergravity. In particular, it is easy to see that the choice

a = −1

2
, b = −3n − 1

3n + 1
(3.25)

3One can actually consider even more general action by letting the parameter a and b to be complex,

a(S DαD
α̇

Hαα̇ − S D
α̇

DαHαα̇) → (aS DαD
α̇

Hαα̇ − aS D
α̇

DαHαα̇) and b(S2 + S
2

) → (bS2 + b S̄2). For

simplicity, we restrict our consideration to the case a = a and b = b.

– 8 –
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corresponds to

SNM
mass =

∫

d8z

[

− 1

16
Hαα̇DβD

2
DβHαα̇ +

n + 1

8n
(∂αα̇Hαα̇)2

+
n + 1

32
([Dα,Dα̇]Hαα̇)2 − (n + 1)(3n + 1)

4n
iHαα̇∂αα̇(Σ − Σ)

−3n + 1

4
Hαα̇(DαDα̇Σ − Dα̇DαΣ) +

(3n + 1)2

4n
ΣΣ

+
9n2 − 1

8n
(Σ2 + Σ

2
) − 1

2
m2Hαα̇Hαα̇ − 2χχ

]

, (3.26)

with χ and Σ constrained as in (3.24). This model can be recognized to be the desired

massive extension of non-minimal supergravity (3.1). Since we have derived (3.26) by

applying a superfield duality transformation to (3.11), the two theories are equivalent and

describe the massive superspin-3/2 multiplet.

One can also obtain the non-minimal formulation (3.26), (3.24) using a slightly different

path. The linearized supergravity actions (2.10) and (3.1) are known to be dual to each

other. The duality proceeds, say, by making use of the auxiliary action

S[H,Σ, σ] = SNM[H,Σ] − 3

∫

d8z
[

σΣ + σΣ
]

, (3.27)

where σ is chiral and Σ is unconstrained. Varying σ in (3.27) makes Σ linear and then we

are back to linearized non-minimal supergravity described by (3.1). Instead, integrating

out Σ and Σ leads to the old minimal supergravity action (2.14).

Now, in order to find a massive extension of (3.1), we can start directly from the above

action (3.27) extended in the following way

Sm[H,Σ, σ, χ] = SNM[H,Σ] +

∫

d8z
[

− 3(σΣ + σΣ) − 1

2
m2Hαα̇Hαα̇ − 2χχ

]

+ 3m

∫

d6z χσ + 3m

∫

d6z χσ , (3.28)

where χ is chiral. Integrating out Σ and Σ, we arrive at the action (3.19) which is known

to be dual to linearized old minimal supergravity (2.14). Instead, integrating out σ and σ

leads to the massive non-minimal formulation (3.26), (3.24).

Let us analyse the compensator sector of (3.26) which is obtained by setting Ha = 0.

Up to a sign, it corresponds to a massive chiral-non-minimal (CNM) multiplet [18]. Such

a multiplet can be viewed as the mechanism to generate a mass for the complex linear

superfield Σ in the presence of a chiral superfield χ by means of a consistent deformation

of the off-shell constraint: D
2
Σ = 0 → D

2
Σ = −4mχ. The CNM multiplet is known to be

dual to a pair of chiral superfields having a Dirac mass term of the form (m
∫

d6z σχ+c.c.);

this multiplet is sometimes called chiral-chiral (CC). The compensator sector of (3.19) is

clearly described by a CC multiplet. It is worth pointing out that CNM multiplets are

ubiquitous in N = 2 supersymmetry in the framework of projective superspace; see [20 –

23] for references on 4D projective superspace and also [24] for extensions to 5 and 6

dimensions.
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We close the section by observing that in the CC and CNM massive supergravity

formulations developed, see eqs. (3.19) and (3.23)–(3.26) respectively, the mass parameter

m can be easily promoted to become complex. This is different from the previously known

formulation described in the appendix, and could be a relevant property when trying to

extend these multiplets to extra-dimensions in particular for the D > 5 case.

4. Discussion

In this work, we have continued (and hopefully completed) a program of the exploration of

the structure of massive linearized 4D N = 1 superfield supergravity models. One of the

points of this continued effort is to establish a number of benchmarks for other purposes.

First, it is known that closed superstring theories and M-theory, when truncated to four

dimensions, must possess massive spin-2 (and higher) multiplets in a low-energy effective

action. Thus our effort is part of the long-term program begun in references [10, 11] to

gain a systematic understanding first of the massive superspin-3/2 system and later all of

arbitrary 4D N = 1 higher spin multiplets.

Second, massive theories are also interesting to study as a step toward the realization of

higher values of D as shown in the work of [25, 26]. There a successful approach was given

in the case of 5D supergravity. However, to date no successful extension of this construction

is known for higher values of D. Thus, this present effort also is a probe for furthering this

program of constructing (at least) linearized versions of all higher D supergravity theories

in terms of 4D, N = 1 superfields.

We have presented the first successful description of the massive version of linearized

non-minimal 4D N = 1 superfield supergravity. As well we have obtained results that show

signs of N = 2 supermultiplet being very relevant to this course of study. This result is

important in a way that may also open a new view of the five-dimensional theory. The

version of the 5D theory constructed in [25] only possesses 5D Lorentz invariance on-shell.

This is manifest in the fact that though the physical spinors in the work by Linch, Luty

and Phillips [25] are proper 5D spinors, the auxiliary spinors in the work are not. The

supergravity multiplet in this work is described by the old minimal supergravity theory

given in [16]. This possesses no auxiliary spinors. A distinguishing point of our present work

is that by describing the supergravity multiplet in terms of non-minimal supergravity, there

opens the possibility to contruct a 5D extension where the auxiliary spinors also describe

off-shell 5D spinors.

Conceptually, the structure of the massive non-minimal action (3.26) differs consider-

ably from the massive minimal models (2.14), (2.15) and (2.16), in the sense that (3.26)

does not involve any mass term for the gauge spinor potential Ψα associated with the

non-minimal compensator Σ = DαΨα. To explain this feature, let us consider the mas-

sive extensions of old minimal supergravity (2.14), (3.11) and (3.19). These three actions

look identical in the sector involving the gravitational superfield. Their parts involving

the compensators only, obtained by setting Ha = 0, look quite different. Nevertheless,

they all share one important common feature: on the mass shell, they describe two free

massive superspin-0 multiplets. The same property holds for the compensator sector of the

– 10 –
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non-minimal action (3.26). That is, it describes a free massive N = 2 hypermultiplet, or

two free massive N = 1 superspin-0 multiplets. Let us now introduce a massive extension

for the compensator part of (3.1). This is as follows [9]:

S = −
∫

d8z
[

Σ Σ +
ζ

2
(Σ2 + Σ

2
) + 2m(ΨαΨα + Ψα̇Ψ

α̇
)
]

, (4.1)

with ζ a parameter. Unlike the compensator sector of (3.26), this action describes a single

superspin-0 multiplet, since the equations of motion imply

−1

4
D2Σ + mΣ = 0 . (4.2)

As a result, the action (4.1) can not be used for generating a massive extension of linearized

non-minimal supergravity. It is worth pointing out that in the massless case, the parameter

ζ can take arbitrary values except ±1 [18]. In the massive case, no restriction on ζ occurs,

since the corresponding term in (4.1) can be completely removed by a field redefinition

Ψα → Ψα + (λ/m)D2Ψα, with λ a parameter.

To conclude this paper, we would like to comment upon a subtle property of the mass-

less action (3.1) in respect to the classification of linearized supergravity models given

in [11]. The linearized action for non-minimal supergravity is defined for n 6= −1/3, 0.

Looking at the second form for the action (3.1), in terms of the superprojectors, one

clearly sees that the case n = −1 is very special. In this and only this case, the action

involves only three superprojectors. The latter feature appears to be in a seeming con-

tradiction with the theorem in [11] that there are no irreducible supergravity multiplets

with three superprojectors in the action. Fortunately, this contradiction can be readily

resolved if one recalls the structure of the linearized gauge transformations in non-minimal

supergravity [9]:

δHαα̇ = Dα̇Lα − DαLα̇ ,

δΣ = −1

4

n + 1

3n + 1
D

2
DαLα − 1

4
Dα̇D2L

α̇
, (4.3)

with Lα an unconstrained gauge parameter. As may be seen, the gauge freedom allows one

to completely gauge away the complex linear compensator Σ provided n 6= −1. This is no

longer true for n 6= −1 (in which case the compensator can be gauged away on the mass

shell only).4 On the other hand, the classification given in [11] applies to those off-shell

realizations for the massless superspin-3/2 multiplet, which can be formulated solely in

terms of the gravitational superfield upon gauging away the compensator(s).

We hope that the present work has brought the topic of massive off-shell superspin-

3/2 multiplets to the same level of completeness as that existing for the massive gravitino

multiplets [14, 28].

4This property of n = −1 supergravity is generic within the so-called gauge transversal formulation for

massless multiplets of half-integer superspin Y ≥ 3/2 [27]. The transversal series terminates at Y = 3/2 at

the n = −1 formulation for non-minimal supergravity.
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A. Dual actions

In this appendix, we collect the dual formulations for the massive minimal models given

subsection 2.2 following [14].

The theory with action S
(I)
mass[H,P ], eq, (2.14), possesses a dual formulation. Let us

introduce the “first-order” action

SAux =

∫

d8z

{

Hαα̇
¤

(1

2
ΠT

3

2

− 1

3
ΠL

0

)

Hαα̇ − 1

2
m2Hαα̇Hαα̇ − U∂αα̇Hαα̇

−3

2
U2 +

9

4
m2P 2 + 3mV

(

U +
i

4
D

2
P − i

4
D2P

)

}

, (A.1)

where U and V are real unconstrained superfields. Varying V brings us back to (2.14). On

the other hand, we can eliminate U and P using their equations of motion. With the aid

of (2.7), this gives

S(IB)[H,P ] =

∫

d8z

{

Hαα̇
¤

(1

2
ΠT

3

2

+
1

3
ΠL

1

2

)

Hαα̇ − 1

2
m2Hαα̇Hαα̇

− 1

16
V {D2

,D2}V − mV ∂αα̇Hαα̇ +
3

2
m2V 2

}

. (A.2)

This is one of the two formulations for the massive superspin-3/2 multiplet constructed

in [10].

The theory (2.15) also admits a dual formulation. Let us consider the following “first-

order” action

SAux =

∫

d8z

{

Hαα̇
¤

(1

2
ΠT

3

2

− ΠT
1

2

)

Hαα̇ − 1

2
m2Hαα̇Hαα̇ +

1

2
U [Dα,Dα̇]Hαα̇ +

3

2
U2

−6mV
(

U − Dαχα − Dα̇χα̇
)

}

+ 3m2

{
∫

d6z χαχα + c.c.

}

, (A.3)

in which U and V are real unconstrained superfields. Varying V gives the original ac-

tion (2.15). On the other hand, we can eliminate the independent scalar U and chiral

spinor χα variables using their equations of motion. With the aid of (2.8) this gives

S(IIB)[H,V ] =

∫

d8z

{

Hαα̇
¤

(1

2
ΠT

3

2

− 1

3
ΠL

0

)

Hαα̇ − 1

2
m2Hαα̇Hαα̇

+mV [Dα,Dα̇]Hαα̇ − 6m2V 2

}

− 6

∫

d6z W αWα , (A.4)
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where Wα = −1
4D

2
DαV is the vector multiplet field strength. The theory with action (A.4)

was constructed in [14].

Finally, to construct a dual formulation for the theory (2.16), let us introduce the

“first-order” action

SAux =

∫

d8z

{

Hαα̇
¤

(1

2
ΠT

3

2

+
1

3
ΠL

1

2

)

Hαα̇ − 1

2
m2Hαα̇Hαα̇ + U∂αα̇Hαα̇ +

3

2
U2

+3mV
(

U − Dαχα − Dα̇χα̇
)

}

− 9m2

{
∫

d6z χαχα + c.c.

}

, (A.5)

in which U and V are real unconstrained superfields. Varying V gives the original ac-

tion (2.16). On the other hand, we can eliminate the independent real scalar U and chiral

spinor χα using their equations of motion. With the aid of (2.7) this gives

S(IIIB)[H,V ] =

∫

d8z

{

Hαα̇
¤

(1

2
ΠT

3

2

− 1

3
ΠL

0

)

Hαα̇ − 1

2
m2Hαα̇Hαα̇

−mV ∂αα̇Hαα̇ − 3

2
m2V 2

}

+
1

2

∫

d6z W αWα , (A.6)

with a vector multiplet field strength Wα. This is one of the two formulations for the

massive superspin-3/2 multiplet constructed in [10].
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